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This paper considers the propagation and scattering of waves in dispersive and 
non-dispersive media containing random inhomogeneities. A detailed discussion 
of the propagation of the coherent component of the wave field is presented, and a 
rather general method for obtaining the absorption coefficient and scattering 
cross-section per unit volume of medium is described. A major objective is to 
derive macroscopic equations for the propagation of the coherent field in the 
sense that the damping due to scattering appears in the wave equation as 
pseudo-viscosity. The paper is concluded by a detailed application of the theory 
to the problem of the propagation of surface gravity waves over a stretch of 
shallow water with a ‘rough’ bed. By including finite amplitude effects a balance 
is achieved between the dispersion of the pseudo-viscous term and the non-linear 
convective terms, which enables the steady profile of a weak bore to be calculated. 

1. Introduction 
It is known that when small inhomogeneities are present in a wave-bearing 

medium the effect is to produce a gradual randomization of an initially coherent 
wave field. The process may be imagined as one in which wave energy is con- 
tinuously scattered out of the coherent signal and, since the state of the scatterers 
is random, the ultimate effect is one in which an assembly (or ‘gas ’) of random 
wave packets is generated, its creation being at  the expense of the energy of the 
coherent wave field. Hence, if attention be confined solely to the propagation of 
the coherent field, in ignorance, so t o  speak, of the existence of the accompanying 
random wave packet ‘gas), one would expect to obtain a macroscopic picture in 
which the process of decay would be represented by the appearance of a pseudo- 
viscous term in an equation describing the propagation of the coherent field. 

Such mean field equations have been derived by Keller (1964) and Karal & 
Keller (1964)) and applied to the study of elastic and electromagnetic waves. 
An alternative treatment of such problems has been discussed by Howe (1971). 
Howe indicates how the mean field equation may be derived to  any desired 
degree of approximation by first calculating the random field from an equation 
describing a multiple collision process. He considers in detail the lowest-order 
approximation (the binary collision approximation) to the equation describing the 
propagation of coherent transverse waves along an infinite stretched string, 

50 F L M  45 



786 M .  8. Howe 

whose density is a random function of position. By deriving the equation de- 
scribing the relation between the wave-number and frequency of infinitesimal 
sinusoidal wave trains (the dispersion relation), he was able to show that at  all 
frequencies the random fluctuations in density cause the mean field to be 
damped. In the two limiting cases of wavelength large and small compared to the 
correlation scale of the random fluctuations the dispersion relation could be 
reduced to a simplified form. Corresponding approximate differential equations 
for the coherent field, containing ‘viscous’ damping terms, were then derived in 
much the same manner that one derives Schrodinger’s equation from the 
Hamilton-Jacobi equation of classical mechanics. 

The methods employed in these earlier papers tended to rely heavily on a 
knowledge of the Green’s function of the homogeneous problem. A principal aim 
of the present paper ( 5  3) is to show how valuable information concerning the 
binary collision approximation to the coherent field equation may be derived 
without a knowledge of the Green’s function, or in cases where the form of the 
Green’s function would lead to analytical difficulties. The procedureis particularly 
valuable when it is not possible to solve the homogeneous problem explicitly. 
Further, in the present paper we make no assumptions regarding the form of the 
correlation function of the random inhomogeneities, apart from supposing that 
such inhomogeneities are stationary random functions. We are thus able to derive 
a rather general expression for the decay rate of a coherent field wave packet of 
given wave-number and frequency, and also an expression for the total scattering 
cross-section per unit volume of the medium ( 5  4). 

Finally, the theory is illustrated in detail by consideration of the problem 
of the propagation of surface waves over a stretch of shallow water with a rough 
bed ( $ 5  5,6). Actually, it is also possible to indicate here a further extension of the 
present theory to the case of weakly non-linear systems. Thus, the problem of 
the shallow water bore is treated from the point of view that the steady form 
of the bore is maintained by a balance between the non-linear convective terms 
in the shallow water equations and the dissipative term due to scattering off 
random fluctuations of the depth ( 5  7 ) .  Such a theory also has application to the 
propagation of sonic booms through atmospheric turbulence (Ffowcs Williams 
& Howe 1971), as well as possibly to the intriguing problem of ‘collisionless’ 
shocks. The steady state of the Earth’s bow shock wave (Hess 1968) might 
possibly be accounted for by the competition between non-linear convective 
terms and scattering due to plasma turbulence. 

We begin by recalling the form of the coherent field equation. 

2. The equation for the coherent field 

random medium, and satisfying the equation, 
Consider a wave field q5 propagating in a dispersive or non-dispersive, non- 

Lq5 = 0, (2.1) 

where L is a linear wave operator. When small random inhomogeneities are 
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present in the medium let (2.1) take the modified form, 

-4 = G$, (2.2) 

where G is a random linear operator, which, for simplicity of exposition, we 
shall assume to have zero mean. 

We now decompose the wave field in the random medium into two components 
$ and q5‘, such that 

In (2.3) 7 represents the mean, or coherent, component of the field in the sense of 
an ensemble average. Then 4’ represents the fluctuations of the actual field about 
this mean in any particular experimental realization. A fuller discussion of these 
points is given by Howe (1971). 

The equation governing the propagation of the coherent field may be derived 
in several ways. The first rigorous derivation appears to  be due to Keller (1964) 
and Karal & Keller (1964). An alternative derivation has also been discussed by 
the author (Howe 1971), and we shall quote the result presented there. 

Now, the random operator G on the right of (2.2) is assumed to have zero 
mean, i.e. if an over-bar denotes the ensemble average, then B = 0. However, 
the ensemble average of a quantity such as G2 does not necessarily vanish. For 
simplicity, however, let us define the operator 

$d = $ + $ I .  (2.3) 

by 

s.+=w, (2.4) 

where + is an arbitrary random or non-random function or operator. Then 
(Howe 1971, equation (5.11)) the equation for the coherent field may be shown to 
have the form, W 

L$ = B C (L-’G - L-lB)” L-’G$, (2.5) 
n=O 

where L-l denotes the Green’s function operator inverse to L. 
Equation (2.5) governs the evolution of the coherent waves $ alone, without 

specific reference to the random field 4‘. It is to be solved as an initial value 
problem, the form of the coherent wave $ being specified at  some initial instant. 
The equation is derived on the assumption that the random field 4’ is generated 
solely by scattering of energy out of the coherent field by the random inhomo- 
geneities, so that initially the random field is null. 

3. The theory of binary collision scattering 

The zeroth-order term, GL-lG.@, on the right of the mean field equation 
(2 .5 ) ,  is quadratic in the random fluctuations of the medium. It is often adequate 
to neglect higher-order terms and adopt the binary collision approximation, 

-- 

L$ = GL-IG. $, (3.1) 

to  the mean field equation. In the first instance, higher-order collision terms 
involve the cube and higher powers of the random inhomogeneity. On the other 
hand, however, the result of the operation of G on $ is not necessarily small, so 
that in using (3.1), apart from requiring that the random fluctuations in the 
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medium be small, it  is also necessary to suppose that $satisfies certain smoothness 
conditions associated with the random operator G. Provided that such a smooth- 
ness condition can be satisfied, it is interesting to note that, if the fluctuations in 
G have a symmetric distribution, then the tertiary collision term in (2.5), corre- 
sponding to n = 1, automatically vanishes, and (3.1) is then valid up to and 
including third-order in the random fluctuations. 

In  8 3 we present a somewhat general analysis of the binary collision equation 
(3.1). This is certainly a valid approximation for the treatment of a given mean 
field wave packet of fixed wave-number, provided that the random fluctuations 
of the medium are sufficiently small. 

Now (3.1) must be solved as an initial value problem, the form of the mean field 
q5 being specified at  some initial instant of time. It is therefore equivalent to 
solving the pair of scattering equations, 

- 

(3.2a, b) 

where only the particular integral of the second equation, generated by direct 
scattering out of the mean field, is required. The initial conditions on $ are 
unchanged, of course. In principle this pair of equations may be solved as soon as 
the Green’s function operator L - I  has been determined. However, this is quite 
often difficult, if not impossible, to obtain in a convenient and usable form. 
Actually, in the following we shall see that the need for L-1 to be known with any 
degree of precision is quite illusory. Indeed, use of the exact Green’s function often 
leads to complications in the analysis which are not warranted by the amount of 
extra information so derived. 

From a physical point of view, we expect a wave packet $ propagating ac- 
cording to (3.1) to have the following properties which distinguish it from a 
similar wave packet propagating in the homogeneous medium, and therefore 
satisfying equation ( 2.1 ) : 

(i) The velocity of propagation of the wave packet will be reduced, essentially 
because it effectively spends a greater time in covering a given distance, owing 
to the ‘buffeting ’ it receives from the random inhomogeneities. 

(ii) Because of the scattering of the mean field energy and the consequent 
permanent creation of a random wave packet ‘gas’, the energy of the mean field 
is gradually absorbed by the medium. 

Both effects (i) and (ii) turn out to be second order in the random fluctuations. 
However, (ii) is quite clearly of considerably more interest than (i), which only 
produces a small change in the undisturbed propagation velocity, whereas 
(ii) describes the physically most important macroscopic effect of the random 
medium. In 3 4 we shall take the view that the most important piece of informa- 
tion to be derived from the theory is the size of this damping effect. This leads to a 
remarkable simplification of the calculations involved. In  terms of a visco- 
elastic description of the medium this approximation corresponds to a neglect of 
elasticity. 

In order to examine a simple, yet still rather general, class of wave-propagation 



O n  wave scattering by random inhomogeneities 7 89 

problems, we shall suppose that the random operator G may be factorized into - 

the following form: 

(3.3) 

where E(x) is a random function of position x in the medium characterizing the 
randomness of the operator G. The time is denoted by t .  The assumption that 
E is independent of the time covers a wide range of problems. Cases where this is 
manifestly not so (e.g. when 6 represents a turbulent fluctuation) are still well 
approximated by this assumption, provided that the time of passage of the 
incident wave packet 7 is small compared to the time scale of the fluctuations. 
The operators G,, G, may be regarded as non-random polynomial functions of 
the derivatives in space and time, as indicated; G, operates on everything 
appearing on its right, i.e. including the fluctuations 5. 

Thus, in terms of the assumed form (3.3), the binary collision scattering 
equations (3.2) take the form, 

and (3.5) 

At this stage, it is necessary to make an assumption regarding the form of the 
linear wave operator L. We shall assume it to be a real, linear di8erential operator, 

The first step in the analysis is to determine the particular integral of (3.5) in 
terms of $. This must, of course, satisfy the radiation or causality condition. To do 
this we use the method of Fourier transformation. The Fourier transform 
f(k, w )  of a functionf(x, t )  is defined by 

f(x, t )  exp [ - i(k . x - wt)]  dxdt ,  ( 3 . 6 ~ )  

with 
m 

f(x,t) = 11 f(k,w)exp[i(k.x-wt)]dkdo, 
-a3 

(3.6b) 

where n is equal to the number of space dimensions involved. 
Actually, the definitions (3.6) are purely formal, and in general certain re- 

strictions on the form of the functionf(x, t ) ,  as well as on the region of integration 
in complex (k, @)-space, must be imposed. In  a causal system of the present type, 
a wave-function f(x, t )  will vanish for t < to, say, and outside a finite region of 
space. If we assumef(x, t )  to have no more than an exponential growth rate for 

13.71 
large time, i.e. 

for some fixed 8 > 0, then convergence of the first of the integrals, (3.6u), is 
ensured provided that 

Im(w) > E .  

lf(x, t )  I 5 eett, 
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From this i t  is concluded that, for each fixed wave-number vector k, f(k, w) 
is aregular function of w provided that Im (w) > c. Further, for such a restriction 
on w ,  f(k, w )  is also a regular function of k throughout complex k-space. 

Thus, in formal manipulations of Fourier integrals ( 3 . 6 a ) )  it  will be assumed 
that the imaginary part of w is large enough to ensure convergence. Similarly, 
the path of integrationin the w-plane for integrals (3 .6b )  must pass above all the 
singularities of f(k, w ) .  This being the case, it follows immediately that the 
radiation or causality condition is satisfied by integrals such as (3 .6b ) .  Indeed, 
the integral will vanish for t < to, since for such t the path of integration in the 
w-plane may be displaced to +ice along which the integrand is exponentially 
small. 

Poles of f(k, w )  which lie in the upper complex w-plane correspond to ex- 
ponentially growing components off (x, t ) ,  and, in general, represent instabilities 
in the linearized system under discussion, The assumption (3 .7 )  essentially places 
a limit on the size of the maximum growth rate of the system. In  the following, we 
shall assume that the appropriate paths of integration have been chosen to 
conform with the above conditions. 

With these ideas in mind, we first take the Fourier transform of (3.5) with 
respect to wave-number K and frequency a: 

x $(X,T)exp[-i(K.X- Q T ) ] d X d T .  

Hence, dividing by L(iK, - iQ) and using the inverse transform, 

x exp [i{K . ( x  - X )  - Q(t  - T)}] dX d T d K d Q .  

It follows that, if t ( X )  is a stationary random function of position, and 

where = 51x)2, then the right-hand side of (3.4) may be expressed in thr form, 

t-7)exp[i(K.z-Ll;27}]dzd.rdKdQ. (3 .9 )  

The next step is to substitute this into (3 .4 )  and to take the Fourier transform 
of the resulting equality. After dividing through by &k, w ) ,  this gives, finally, 

(3 .10)  
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Im ( w )  > E ,  where 

H ( k ,  K, W )  = GI(ikj)G2(iKj, - iw) G,(iKi) GZ(i&, - iw), (3.11) 

and $(k) is the Fourier space transform of the correlation function R(x).  In  
general, (3.11) involves scalar products of k and K, indicated by the repeated 
suffixes. 

Equation (3.10), which is the main result of this section, is the dispersion 
equation of binary collision theory governing the propagation of mean field wave 
packets. The ‘power spectrum’ of the random fluctuations of the medium is 
essentially given by $(k), which often takes its maximum value at, or in the 
region of, the origin. Hence it may be anticipated that a large contribution to the 
integral (3.10) will come from those wave-numbers K which lie in the vicinity of 
the mean field wave-number k. This is simply an indication of the prominence of 
forward scattering, and is a dominant aspect of the scattering of high-frequency 
incident waves (cf. Lighthill 1953, $3) .  

4. The dispersion equation and scattering cross-section 
Equation (3.10) is the exact dispersion equation of binary collision theory. 

However, its usefulness is limited by our ability to perform the integration over 
K-space. In  general this is only possible in exceptional circumstances. Actually, 
such an evaluation tends to be facilitated, when possible, if the wave-number 
integration in (3.9) is carried out first; this gives the Green’s function, and one is 
left with an integration over z, corresponding to a ‘retarded potential’ type of 
solution. 

In  an arbitrary medium it is not normally possible to determine the Green’s 
function explicitly. Further, it often happens that even with a precise knowledge 
of the Green’s function the expressions take on such a complicated form that the 
subsequent integration over z becomes intractable. 

In the present section we show how valuable information regarding the 
absorption of mean field energy by the random medium may be derived without a 
precise knowledge of the integral on the right of (3.10) (cf. (ii), $3). We shall 
restrict the discussion to a consideration of stable systems without dissipation. 
This means that, for each fixed real wave-number vector k, the roots of the 
homogeneous dispersion equation 

lie on the real w-axis. Hence in the integrand on the right of (3.9) the singularities 
in the S1-plane lie on the real axis, and so the integration over !2 may be performed 
along a line parallel to the real axis and displaced slightly into the upper half 
plane. It follows that in performing the integration overK in (3.10) w must be re- 
garded as having a small positive imaginary part which is afterwards allowed to 
tend to zero. It is also true that, since there is no dissipation in the wave system, 
except for the absorption of mean field energy by the random wave field, then 
H(k, K, w )  must be real for real k, K and w .  This is a consequence of the fact that 
in a non-dissipative system the characteristics of the exact equations (2.1) and 
(2.2) must be real. 

L(ik, -iw) = 0 (4.1) 
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Now (3.10) is the dispersion equation of mean field wave packets as calculated 
on binary collision theory. But that theory is essentially on O ( p )  correction to the 
homogeneous equation (2.1) due to the presence of random elements. Hence it is 
appropriate to use (3.10) to calculate the corresponding correction to the root,s, w, 
of the homogeneous dispersion equation (4.1). Thus suppose that 

- 
6.J = wo + &dl, (4.2) 

where wo is a root of equation (4.1). Then 

But the integration in (4.4) is to be performed in the limit as Im (wo)  -+ + 0,  
which is the same thing as setting Im (wo) equal to zero and indenting the path of 
integration in K-space to pass around the poles of the integrandin the appropriate 
sense. On such a region of integration the integrand is real provided that K is real. 
On the indentations, where K becomes complex, the integrand will become 
complex and there will be a complex contribution, in fact a purely imaginary 
contribution, to the integral. The remaining integration over real values of K is 
equal to the Cauchy principal value of the integral (4.4), and is real. 

In this way we see that the integral in (4.4) may be separated iiito real and 

where A and B are real functions of k and wo. 
The real part of w1 represents the modification of the frequency due to the 

random buffeting experienced by the mean field wave packet. The imaginary part 
(which in applications turns out to be negative) represents the damping of the 
mean field due to scattering off the random inhomogeneities. 

Now the main difficulty associated with the evaluation of the integral in 
(4.4) lies in the calculation of the Cauchy principal value contribution. The 
contribution from the poles may be obtained by standard complex variable 
theory. However, as aIready mentioned, the real part of (4.5) merely serves to 
alter slightly the velocity of propagation, whereas the imaginary part gives rise to 
damping, which is absent in the homogeneous equation (2.1). In  applications it is 
only the damping factor that is normally required, and we shall therefore neglect 
the small real correction to the frequency. 
Hence, from (4.4), 

where dK = K"-ldKdv, and dv represents the product of the differential elements 
constituting the solid angle in K-space. For example, in two-dimensions d v  = do, 
the polar angle, and in three dimensions dv  = sin OdOdq5, in the usual notat>ion of 
polar co-ordinates . 
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In terms of polar co-ordinates, it is convenient to regard L(iK, - i w o )  as a 
function of K, wo and the angular variables specifying the direction of K and 
denoted by v, and we shall write it in the form L(K,  v ;  oo). For fixed v and real wo, 
the poles of the integrand of (4.6) on the real K-axis lie at  those real K given by 

L(K, V ;  w0)  = 0. 

When wo has a small positive imaginary part is the root K is shifted by a small 
amount AK given by 

L(K+AK,v; o , + ~ s )  = 0,  

i.e. 

or (4.7) 

The pole is displaced into the upper or lower complex K-plane, requiring respec- 
tively that the contour of integration be indented below or above the real K-axis, 
according as g/g; 0. 

Hence, the imaginary contribution to (4.6) is given by 

where the summation is over all real positive K ,  satisfying L(K,,,, v ;  wo) = 0,  is 
a unit vector from the origin in the direction of the solid angle element dv. Also 

Now in general we deal with systems in which energy is conserved. This means 
that at  any instant the total amount of wave energy is fixed, so that the growth 
of the random wave fieId necessarily requires the decay of the coherent field. 
It can be seen that under certain conditions Im(w,) is definitely negative, 
corresponding to clamping of the mean field (cf. Fourier representation of wave- 
functions (3.6b)). In  the important case in which L(ik, - iw)  is a function of IkJ 
and w alone, and when further, for each fixed w ,  all wave-number vectors satis- 
fying L(ik, - iw)  = 0 have the same length, then 

But +(k - &) is the Fourier transform of the correlation function of a stationary 
random process and is therefore non-negative. Also, we can generally assert that 
H(k, kq, wo) is positive. Indeed in the present case L(a/ax, a/at)  may be regarded 
as a polynomial in V2, a2/at2, and since, in general, the random operator C is 
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derived from L by allowing a physical parameter of the medium to become a 
random function of position, it is clear that a large number of physically relevant 
cases are covered when the operators G, and G2 have the forms, 

G2= P 2 ( v 2 , y 4 4 . . . , j  at2 ax, axj axk 
(4.11) 

where P,, Pz are polynomial expressions, with the convention that repeated 
suffixes in the product G,[G2 implies summation (cf. definition 3.3). It follows 
that H(k,kq, w )  is positive, since, although it may possibly contain negative 
scalar products k .  q, these will occur in pairs multiplied together. Hence, the 
integral is positive definite, and so Im (w,) is negative definite. 

We have thus seen that absorption of mean field energy comes from those 
wave-number vectors K of the integrand in (4.6) at which L(iK, - iw,) vanishes. 
Now, for each fixed real K, the roots w of (4.1) furnish the totality of species of 
wave which can be supported by the medium. Conversely, if w is a fixed real 
quantity, then only those waves with wave-number vector K satisfying (4.1) are 
propagated at  frequency w.  Hence, if the incident mean field has frequency o, 
then, since the medium is time independent, all scattered waves must have that 
frequency, and all possible scattered waves must therefore have wave-number 
vectors K satisfying (4.1). The integration in (4.6) illustrates this fact. Non- 
propagating wave-numbers (not satisfying (4.1)) are involved in the Cauchy 
principal value contribution to the integral, and merely serve to alter slightly the 
velocity of propagation of the wave. Propagating wave-numbers, however, give 
complex contributions to the integral, and correspond to absorption of mean field 
energy by the random wave field. 

We conclude this section by illustrating how the above results may be used to 
calculate the total scattering cross-section per unit volume of medium. Consider, 
in fact, a steady-state situation in which the energy density of the mean field of 
wave-number k and frequency w is equal to E(x). Let v(k) denote the group 
velocity of the incident mean wave field, and which therefore characterizes the 
velocity at  which mean field energy propagates. Then the rate of absorption of 
mean field energy per unit volume of medium is given by 

- div(E(x)v(k)}. 

Since the flux of energy is just equal to E(x)lv(k)l, it follows that the total 
scattering cross-section per unit volume of the random medium, c, is given by 

Now, for a plane wave of wave-number k, 

(4.12) 

(4.13) 
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where E, is a reference energy density. Hence, 
- 

(T = - 2 t 2  Im (4 
IW I ' 

~ = - 2PIm (4 
i.e. since v(k) = aw/ak, we have finally, 

- 

law/ak( ' 
(4.14) 

5. Application to shallow water waves 
The theory of the previous sections is now illustrated by a consideration of the 

problem of the propagation of surface gravity waves over a stretch of water with 
a rough, or irregular, bed. Since a precise knowledge of the depth variations in such 
a situation cannot be assumed known, it seems appropriate to regard the fluctua- 
tions in depth as a random function of position. In  fact, we shall suppose that the 
variations in depth may be regarded as a stationary random function of position. 

The equations of shallow water wave theory are derived by Stoker (1957). If 
u, denotes the mean horizontal fluid velocity, then in terms of horizontal co- 
ordinates xi (i = 1,2)  the time t ,  and the surface elevation $(x, t ) ,  the equation of 
motion on shallow water theory has the form, 

and the equation of continuity is 

a a 
- ( h q )  + - = -- ($Uj), 
axj at axj 

provided that h, the undisturbed depth of the water, varies slowly on a scale of 
depth. This depth, h(x), is a function of x alone. By differentiating (5.2) partially 
with respect to time, and substituting for auj/at from (5.1), we obtain the non- 
linear shallow water equation, 

The terms on the right of this equation represent the effects of self-modulation 
of the wave form due to finite amplitude. These are neglected on linear theory 
(but see 3 7). If we set 

where h, represents the mean undisturbed depth and g(x) is a stationary random 
function of x representing small fluctuations in the depth, then, with a2 = gh,, 
the linearized form of (5 .3)  becomes 

(5.4) h = h,{l+ m,>, 

(5.4) 

Now the random operator on the right of this equation has precisely one of the 
forms included in definition (3.3). We may therefore apply the whole of the 
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binary collision theory developed above to discuss the propagation of mean field 
surface wave packets. Further, the differential operators on the left of (6.4) 
constitute the operator L(a/ax, a/at), and clearly L(ik, - i w )  is a function of 
Ikl and w alone. Hence, we can use the formula (4.10) to obtain the following 
frequency correction ; 

$(k-k<)(k.c)2dv. (5.5) 

6. The Iimits of short and long wavelengths 
In the absence of further information concerning the form of the function 

$(K), it  is not possible to proceed further than the formula ( 5 . 5 ) .  However, in the 
limiting cases of short and long wavelengths it is possible to derive approximate 
expressions for the integral involved in terms of the ‘integral scale ’ of the random 
fluctuations <(x). 

To do this we first let the angle between k and < be denoted by 8, then, if we 
temporarily take k parallel to the xl-axis, and < = c(0) = (cos 8, sine), we have 
that 

k $(k-L<)(k.<)’dv = k3 $(k-k<)cos20d0. (6.1) s so2n 
Suppose now that K = k - k<(O). Then the integral in (6.1) is to be performed 

over a circle of radius k in K-space shown in figure 1.  In  the limit of short wave- 
lengths (k large), we shall suppose that k is much greater than the dominant 
wave-numbers of the ‘power spectrum’ @(K). Then $(K) is only significant when 
IKl/lc is small. The extent of the region of wave-number space occupied by the 
power spectrum in relation to the circle of integration C is illustrated in figure 1 
(cf. Lighthill (1953), who used this diagram in the study of sound scattering by 
turbulence). It is clear that the major contribution to the integral (6.1) comes 
from that part of the circle where Kl is small, and this is approximately the part 
of the plane Kl = 0 where $(K) is significant. From this, and making the approxi- 
mation cose = 2 ,  it  follows that the integral (6.1) becomes approximately 

where L is tho integral scale of the random fluctuations in the k-direction. Hence, 
we arrive at the short wavelength approximation to  (5 .5 )  

Im(wl) = -aLk2/4. (6.3) 

Next, let us consider the opposite limit in which the wavelength of the incident 
mean field is large compared to those of the dominant harmonic components of 
$(K). In this case, the circle of integration C in figure 1 will lie completely within 
the region of wave-number space occupied by $(K). For sufficiently smaIl k 
(i.e. long wavelength), it is therefore appropriate to expand @(K) in a power 
series in K. Suppose for simplicity that the first non-zero term in this expansion is 
11.(0), then (6.1) becomes 
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FIGURE 1. The circle of integration C in K-space in relation to the region of wave-number 
space occupied by the random depth fluctuations. The figure illustrates the case of a 
short wavelength incident wave packet. 

FIGURE 2. The mean profile of the shallow water bore. 

But 

where i t  has been assumed that the integral scale L is independent of direction. 
Hence, the long wavelength approximation becomes 

Im (q) = -ak3L2/4 .  (6.6) 

Actually, we may now use the limiting results (6.3) and (6.6) to derive approxi- 
mate macroscopic equations for the mean field containing damping terms. First, 
consider the short wavelength case given by (6.3). Referring to the definition 
(4 .2 ) ,  and noting that in the case of shallow water waves wo = & ak, we obtain 



798 M .  S. Howe 

for the corrected eigenfrequency , including the effects of binary collision damping, 
but excluding the small effect of real frequency shift due to passage through the 
medium. But the frequencies (6.7) are the roots of the dispersion equation 

(w + ( ia~P2/4)  1 ~ 2 ) s -  a2k2 = 0, 

o2 - a2k2 + (iaLF12) W k 2  = 0. 

i.e. correct to terms in F, 

Now, this is the dispersion equation of the equation, 

which therefore describes the propagation of the mean wave field in the short 
wavelength limit. The term on the right clearly has the interpretation of a viscous 
damping effect. 

Similar reasoning may be applied in the limit of long wavelengths. Here 

w = & ak - (iuL2k3/4) p, (6.10) 

which gives the roots of the dispersion equation 

w2 - a2k2 + (iaL"/Z) ok3 = 0. (6.11) 

Now in this equation k3 = [kI3, and has no direct analogue as a differential 
operator in x-space. To gain further insight into the nature of the real space 
equation corresponding to (6.11) let us suppose for simplicity that the mean wave 
field $ (x, t )  is a function of time and one space dimension x alone. Then, if (6.11) 
be multiplied by $(k,w) and the inverse Fourier transform of the resulting 
equation is taken, we obtain the following mean field wave equation: 

(6.12) 

where the integral on the right is a Cauchy principal value integral, and 

7. The non-linear shallow water wave equation 
Equations (6.9) and (6.12) derived above are macroscopic equations, which 

describe the propagation of the mean wave field without specific reference to the 
presence of the random wave packet 'gas ' responsible for the dissipation. In gas 
dynamics, dissipation enters through the viscous term in the equation of motion, 
which in fact is a macroscopic approximation to the average properties of the 
discrete molecular components of the gas. In  the theory of weak shock waves 
(Lighthill 1956), it is customary to balance this macroscopic dissipation term 
against the non-linear convective term. In  this way, one is able to compute, for 
example, the steady state form of a weak shock wave. 

The possibility arises, therefore, of applying the theory presented in the earlier 
sections of this paper to the study of such non-linear phenomena. In particular, it 
would be of great interest to be able to effect a balance between the macroscopic 
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dissipation term due to random scattering and any non-linear terms appearing in 
the full equation in the hope of obtaining steady state 'shock' profiles. The idea 
of applying the present method to such problems was originally suggested to the 
author by Professor M. J. Lighthill, and it has already been successfully applied 
t o  the study of the propagation of weak shock waves through atmospheric 
turbulence (Ffowcs Williams & Howe 1971). 

Let us now outline the procedure by considering the problem of the shallow 
water bore, or hydraulic jump. In  strong bores the main mechanism of energy 
loss is due to turbulent dissipationandchurning-up of the flow (Lighthill 19571, but 
weaker bores have a different structure. Behind a sufficiently weak bore there is a 
tendency for a train of stationary waves to form which exhibit no breaking, the 
flow appearing perfectly smooth. Energy dissipation then takes place principally 
by radiation through this stationary wave train. It may be argued, however, that 
the presence of irregularities in the river bed would introduce an additional 
means of dissipation due to wave scattering. For weak bores such damping could 
conceivably account for all of the required dissipation at the bore, and so inhibit 
the formation of the stationary wave train in its wake. We shall take the view, 
therefore, that the steady state of such a weak bore is maintained solely by 
means of a balance between non-linear convective terms and the dissipation due 
to wave scattering off the random irregularities of the river bed. 

We start by deriving a binary collision theory for the non-linear shallow water 
wave equation (5.3) This may be expressed in the form: 

Assume that for a theory of weak bores it is sufficient to retain terms up to and 
including second order. This means that (7.1) may be approximated by 

Now take the ensemble average of this equation in the manner described in $2. 

ui = ui + u;, 

Set'ting in the usual notation, 

we obtain 

(7.3) 

a 2  - 
(#'?A;). (7.4) 

Subtracting this from (7.2), we obtain the equation for q5': 
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The usual approximation of binary collision theory then permits simplification 
of this to 

Now the second pair of terms on the right of (7.6) are of order so that the 
component of$' corresponding to these terms will give rise to terms non-linear in 
the mean field and of order 1g12$2 when substituted into (7.4). Such non-linear 
terms will be neglected in comparison with those of order $2. Similarly, only the 
mean field non-linear terms need be retained in (7.4). Hence, we arrive at) the 
following pair of binary collision equations : 

The second of (7.7) is precisely the random equation obtained on the linearized 
theory of the earlier sections (although not set down explicitly). Hence, it may be 
solved in precisely the formal manner discussed in $$3 ,4 ,  and the solution sub- 
stituted into the mean field equation of (7.7). Without labouring on the mathe- 
matical details, let us adopt the notation of (3.1), and write the mean field 
equation in the form, 

We now seek steady solutions of this equation of the form, 

5 = U ( X -  Ut),  (7.9) 

where $!E  depend only on one space co-ordinate x, U is a constant wave speed, and 
5 is the x-direction mean velocity (the other component having zero mean). In 
particular, we shall look for a 'shock-like' solution of the type illustrated in 
figure 2 .  Under these circumstances, (7.8) reduces to 

(7.10) 

To express (7.10) in terms of the unknown $ alone, we make use of the averaged 
form of the continuity equation (5 .2 ) .  Actually, it is permissible to use the 
linearized form of (5 .2 ) ,  since only second-order terms are being retained 011 the 

az a$ 
Oax at 

right of (7.10): 
h -+- = 0, (7.11) 

i.e. by (7.9), 
U -  

i z = - $ .  
hll 

(7.12) 
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Thus, (7.10) becomes 

(7.13) 

- -  
It remains to determine the form of GL-IG . $. This term has already been seen 

to simplify in the limits of short and long waves on linear theory. First, consider 
the short wavelength limit. 

Short wavelength limit 

This requires that all wave-numbers, k ,  associated with 3 must satisfy 

k L $ 1 ,  

where L is the correlation length of the random fluctuations. 

mine the form of GL-IG $: 
(a)  Take the Fourier transform of equation (7 .13) .  
(b )  Substitute an approximate expression for the transform of GL-IG 7, bearing 
in mind that for waves travelling in the positive x-direction wo and k must have 
the same sign. 
(c) Take the inverse transform to give the appropriate approximate real space 
equation (7.13).  

The procedure is straightforward and, as might have been anticipated, gives 
the same result as is obtained from the approximate form on the right of (6.9), 
provided that the operator slat is replaced by -&/ax (the error introduced by 
this approximation is negligible, since the dissipation term is already of order 
p$). In this way, we obtain the following short wavelength approximation to 

Strictly, the following sequence of operations should be carried out to deter- -- 

(7.13): 
(7.14) 

Since, for a wave form of the type shown in figure 2, all derivatives vanish a t  
x = 00, this reduces to 

- U ~ L F  a$ 3 ~ 2 - ~  
(U2-a2)$ = -- -+-$ . 

2 ax 2h0 
(7.15) 

Next suppose that the jump in depth across the bore is equal to E ,  then, as 

3 u2 
2h0 " 

x + - m ,  (7.15) gives 
U2-a2 = ~ 

i.e. 
a 

( 1  - [3e/2ho])3 ' U =  (7.16) 

which shows that the propagation velocity of the bore exceeds the shallow water 

3ae/4h0. wave speed by approximately 

Using (7.16),  the wave equation may be written 

(7.17) 

F L M  45 5 1  
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Hence we derive the form of the bore profile, 

(7.18) 

This should be compared with the theory presented by Lighthill (1956, 
p. 287) in his survey of the Taylor theory of weak shock waves. Following Light- 
hill we define the bore ‘thickness’ 6 to be equal to the distance over which the 
surface elevation falls from 0.956 to 0 . 0 5 ~ .  This is readily computed from the 
above formula to be 

&=-- h0L’(210ge19), 
36 

i.e. 6 = 2 hoLp/e. (7.19) 

Actually, it  is instructive to derive the result (7.19) in an alternative manner. 
This depends on deciding at the outset to develop a polynomial approximation to 
the exact profile of the bore. To do this, we first define the dimensionless variable, 

which enables (7.17) to be written in the form, 

6a$/a7 = $($-.). (7.20) 

Referring to figure 2, it would appear to be reasonable to adopt a cubic approxi- 

$ = + a7 +/973), (7.21) 

valid over the range ( - 1 < 7 < 1) of the profile. Then the bore thickness is equal 
to 21, and at  - 

7 = I ,  $ = O ,  andat  7=-1 ,  $ = s .  

4 = - al- pl3. 

mation to the bore profile of the form, 
- 

In either case, we must have (7.22) 

To ensure that the profile is ‘smooth’ we next require that the gradient 

(7.23) 
a$/aq vanish at  r] = k 1. Hence 0 = a + 3p2,  

so that a = - 3/41 and p = 1/413, 

and therefore (7.24) 

In deriving this approximation, we have used two conditions at  7 = & I ,  and 
one condition at 7 = 0, viz. that $(O)  = €12. We complete the specification of 
(7.24) by satisfying (7.20) in the limit as 7 -+ 0. This means that the approximation 
is two-ended, making use of two conditions at  both ends of the range (0, & I), and 
should therefore be more efficient than a Taylor series expansion from one end 
of the range. Thus, substituting (7.24) into both sides of equation (7.20), and 
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setting 7 = 0, gives 3/41 = a, 
i.e. 1 = 3, 

and so (7.25) 

is the required approximation to the bore profile. 
The dimensionless bore thickness 21 = 6. Hence, the actual thickness 6 is given 

6.38 mF = 6, (7.26) 

i.e. 6 = 2h0LP/s, 

which is precisely the result (7.19). 
We shall see that this approximate method is useful in determining the thick- 

ness in the long wavelength approximation considered below. Before turning to a 
consideration of this case it is of interest to point out that an approximate analysis 
of non-steady, non-linear wave forms can also be treated by a variant of the theory 
of this section. In  this case one can derive the unsteady analogue of (7.17), viz. 

(7.27) 

where X = x - at. But this is just Burger’s equation, which has been discussed in 
great detail by Lighthill (1956). We shall not pursue this matter further here, but 
refer the interested reader to the original reference for further details. 

Long wavelength limit 

By reasoning similar to that indicated above it is readily shown that in the long 
wavelength limit the equation for the bore profile corresponding to (7.15) has 

As before, 

and ( 7 . 2 8 )  then simplifies to 
- 

hoL2p a2 f m  $(X)dX - -  
- $($ - 4. 3n  ax2 x-x 

m a2$ ax 
By means of the ‘Poincare-Bertrand ’ lemma, 

a%$ = -+- 
ax2 ’ 

we finally transform (7.29) into 

( 7 . 2 8 )  

(7.29) 

(7.30) 

51-2 
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It is now clear by inspection that a solution of this non-linear integral equation of 
the form illustrated in figure 2 must exist. 

Changing to the dimensionless variable, 

7 = (3€/7rhOL2p)k2!, 

(7.30) becomes (7.31) 

Next, we adopt the cubic approximation (7.24) to the solution of (7.31) in the 
vicinity of the wave front. Then by substituting for $ in (7.31), noting that the 
limits of integration now become ( - Z ,  I), and equating the lowest order terms 
appearing on each side of the equation, we deduce that 

1 = p. 14 (7.32) 

Hence, the dimensionless bore thickness is equal to 2,,/%, so that the actual 

6 = 2L(5;rrh0p/14~)9. (7.33) 
thickness S is given by 

The work reported in this paper was supported by the Bristol Engine Division 
of Rolls Royce Limited and the Ministry of Technology. 
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